
www.manaraa.com

FACILITATING REPRODUCIBLE COMPUTING VIA SCIENTIFIC

WORKFLOWS -- AN INTEGRATED SYSTEM APPROACH

by

Yuan Cao

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer Sciences

Indianapolis, Indiana

May 2017

www.manaraa.com

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Yao Liang, Chair

Department of Computer and Information Science

Dr. Fengguang Song

Department of Computer and Information Science

Dr. Jiang Yu Zheng

Department of Computer and Information Science

Approved by:

Dr. Shiaofen Fang

Head of the Departmental Graduate Program

www.manaraa.com

iv

ACKNOWLEDGMENTS

This thesis would not be done without the help and support of many people.

I would like to express my gratitude to my adviser Prof. Yao Liang for his great

support and help as I worked on graduate courses and the thesis. His supervision helped

expedite my research progresses and opened the door to new discoveries.

I would also like to thank my committee members Prof. Fengguang Song and

Prof. Jiang Yu Zheng for their time and guidance. The Department of Computer &

Information Science, Purdue University at Indianapolis has provided an excellent

environment for my study and research.

In addition, I would like to thank Prof. Shiaofen Fang, Prof. James Hill, Prof.

Mohammad Al Hasan, Prof. John Gersting and Prof. Rajeev R. Raje for their wonderful

courses. I learned a lot from these inspiring classes, and have applied what I gained in

these classes to my research work.

I am also thankful to many department staff, including, but not limited to, Joan,

Nicole and Scott and all people and students, especially Yimei Li, Xiaoyang Zhong, from

my department, for their patience and help as they came along with me during this

process.

Finally, I would like to thank to my parents and my wife for their love and

support.

www.manaraa.com

v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ABBREVIATIONS ... ix

ABSTRACT .. x

CHAPTER 1. INTRODUCTION ... 1

1.1. Research Background .. 1

1.2. Definitions ... 3

1.2.1. What is Provenance? ... 3

1.2.2. What is Scientific Workflow System? .. 3

1.3. Research Goal .. 3

1.4. Organization of the thesis .. 4

CHAPTER 2. RELATED WORK .. 5

2.1. noWorkflow ... 5

2.1.1. noWorkflow Overview ... 5

2.1.2. Drawbacks in noWorkflow ... 5

2.2. YesWorkflow ... 6

2.2.1. YesWorkflow Overview ... 6

2.2.2. Drawbacks of YesWorkflow ... 6

2.3. VisTrails ... 7

2.3.1. VisTrails Overview ... 7

2.3.2. VisTrails’ Important Features ... 7

CHAPTER 3. APPROACH AND ARCHITECTURE ... 9

3.1. Design Objectives .. 9

3.2. High Level Architecture .. 10

3.3. VisTrails Extension Interface .. 11

3.4. MATLAB Interface ... 13

3.5. Python Interface ... 13

3.5.1. Pymat .. 14

www.manaraa.com

vi

3.5.2. Mlabwrap .. 14

3.5.3. Pymatlab ... 14

CHAPTER 4. IMPLEMENTATION.. 16

4.1. Generation of MATLAB Module .. 18

4.1.1. With MATLAB 2016b .. 18

4.1.2. With MATLAB 7 .. 20

4.2. Template Design .. 20

4.2.1. With MATLAB 2016b .. 20

4.2.2. With MATLAB 7 .. 22

4.3. Graphical User Interface Design .. 23

4.4. Other Extensions .. 25

CHAPTER 5. DEMONSTRATION ... 29

5.1. Demonstration Environments .. 29

5.2. Main Functions overview .. 29

5.2.1. From MATLAB Script to VisTrails’ Workflow ... 29

5.2.2. From VisTrails’ Workflow to MATLAB Script ... 36

5.2.3. Two way search .. 38

5.3. Wavelet Image Compression Example .. 39

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 44

REFERENCES ... 45

www.manaraa.com

vii

LIST OF TABLES

Table 4.1: Data type mapping from VisTrails to MATLAB .. 24

Table 4.2: Data type mapping from MATLAB to VisTrails .. 25

Table 4.3: Generic modules .. 26

Table 5.1: Experiment environment ... 29

Table 5.2: Wavelet filter ... 42

www.manaraa.com

viii

LIST OF FIGURES

Figure 3.1 Master/Slave Architecture of the Proposed Integrated System 11

Figure 3.2 Extension structure .. 12

Figure 4.1 Illustration of VisTrails-MATLAB integration .. 17

Figure 4.2 Illustration of integrated VisTrails-MATLAB menu bar 18

Figure 4.3 The process of generating MATLAB module. .. 19

Figure 4.4 __init__.template file. .. 20

Figure 4.5 init.template.file. .. 21

Figure 4.6 init.template file for MATLAB 7. ... 22

Figure 4.7 GUI for inputting MATLAB module information ... 23

Figure 4.8 Some generic MATLAB modules developed for convenient use 27

Figure 5.1 A MATLAB script for image compression based on wavelet transformation 30

Figure 5.2 Creating module in VisTrails ... 31

Figure 5.3 Enabling module packages in VisTrails ... 32

Figure 5.4 Illustration of built workflow in integrated VisTrails-MATLAB system 32

Figure 5.5 Set parameters in module wavedec2 ... 33

Figure 5.6 Illustration of version tree in integrated VisTrails-MATLAB system 34

Figure 5.7 Version tree management left side ... 35

Figure 5.8 Version tree management right side ... 35

Figure 5.9 Finding the result saving directory ... 36

Figure 5.10 User function in MATLAB .. 37

Figure 5.11 Use user function as workflow module .. 37

Figure 5.12 Use of user function as a workflow module ... 38

Figure 5.13 User Modules .. 40

Figure 5.14 Connect all modules ... 41

Figure 5.15 Compression results .. 41

Figure 5.16 Version tree .. 43

www.manaraa.com

ix

ABBREVIATIONS

API Application Program Interface

COM Component Object Model

DLL Dynamic Link Library

GUI Graphical User Interface

SWfMS Scientific Workflows Management System

XML Extensible Markup Language

www.manaraa.com

x

ABSTRACT

Author: Cao, Yuan. MS

Institution: Purdue University

Degree Received: May 2017

Title: Facilitating Reproducible Computing via Scientific Workflows -- An Integrated

System Approach

Major Professor: Yao Liang

Reproducible computing and research are of great importance for scientific

investigation in any discipline. This thesis presents a general approach to provenance in

the context of workflows for widely used script languages. Our solution is based on

system integration, and is demonstrated by integrating MATLAB with VisTrails, an open

source scientific workflow system. The integrated VisTrails-MATLAB system supports

reproducible computing with truly prospective and retrospective provenance at multiple

granularity levels as scientists choose for their scripts, and at the same time, is very easy

to use.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1. Research Background

In the era of today’s computing and information technology, reproducible

computing and research are of great importance for scientific investigation in any

discipline, from broad computational sciences (e.g., physics, chemistry, biology, and

neuroscience), to various computational engineering and modelings [1, 2, 3]. Taking an

example of the study of climate change, scientists need to simulate complex physical

phenomena and behaviors based on various processes including climate, hydrological,

environmental, chemical, ecological, and biological, under various conditions and

parameters, where computational models are developed for individual processes, and

different models are coupled with each other to account for the complicated interactions

among individual physical processes. Each involved individual model is realized in a

software module or system, thus the overall coupling modeling forms a complex

modeling system of systems.

To investigate such a modeling system of systems is not an easy task. Its

complexity comes from the following aspects:

(1) A number of individual models to select and different ways to form a

computing workflow

(2) Different input and output structures and formats of each model

(3) Various data sets from different data sources to select (and to fuse)

(4) Potentially a huge parameter configuration space of models to explore

Therefore, it is not surprising to see that it is very challenging for one group or

organization’s published modeling research results to be reproduced by another research

group or organization, which makes the verification, validation, evaluation and sharing of

any new modeling result very difficult in scientific communities.

In view of the above problems, scientific workflows with provenance are an

effective tool to address the reproducibility issues [e.g., 4, 5, 6]. A computing pipeline of

diverse model coupling can be accurately described as a scientific workflow, in which

each model can be expressed as a workflow item. Depending on the level of granularity

www.manaraa.com

2

at which data dependency needs to be observed, a model itself can be further described as

a subworkflow composed of multiple processing steps. With an appropriate scientific

workflows management system (SWfMS) framework, the execution of a constructed

workflow with selected original data sets under given parameter configuration can be

precisely recorded through SWfMS’ (retrospective) provenance functionality at run time.

The recorded provenance information can be used later to trace the lineage of a particular

result by identifying its corresponding data inputs, parameter setting, and the processing

steps and the model couplings used to produce it, enabling the full reproducibility of the

entire complex computational experiment/modeling process.

On the other hand, scripting languages, such as Python, R, and MATLAB, have

been widely used in various scientific disciplines for computational experiments,

engineering modelings, and data analytics. During the life cycle of scientific experiments,

scientists compose scripts, execute them, and conduct analysis on the results. Then,

depending on the analysis on the obtained results, they modify their scripts, input data

sets, and/or parameter setting, to get more results and refine the experiment. This

exploratory process continues until some satisfactory research goal is achieved. However,

native Python, R and MATLAB scripts do not support scientific workflow and

provenance, making reproducibility a great challenge to scientists in the scientific

community. To address this issue, a recent new software tool noWorkflow [7] makes use

of Python runtime profiling functions to reveal provenance traces of the execution of the

script, providing retrospective provenance information similar to that in SWfMS for

Python users. A drawback of noWorkflow is that its provenance information is captured

at the code level of script statement, instead of at scientific workflow level. As a result,

the recorded provenance information is potentially overwhelming and not easy to use.

Another new tool called YesWorkflow [8] produces prospective provenance in script,

which is achieved via first marking up scripts using a keyword-based annotation

mechanism, in terms of comments of the host language, and then interpreting the

structured annotation comments. However, the YesWorkflow has no retrospective

provenance. McPhillips et al. extended YesWorkflow tool to infer retrospective

provenance information [9]. Since the YesWorkflow tool and its extension are not

invoked at all while a script is executing, a fundamental limitation of [9] is that no

www.manaraa.com

3

dependencies between data inputs, parameter settings, intermediate results, and final

outputs can be directly observed or recorded at run time. In other words, the retrospective

provenance information provided in this way is inferred based on metadata but not

observed from the actual execution of the script, and thus may not reflect the real

retrospective provenance.

1.2. Definitions

1.2.1. What is Provenance?

Within computer science, informatics uses the term 'provenance' to mean the

lineage of data, as per data provenance, with research in the last decade extending the

conceptual model of causality and relation to include processes that act on data and

agents that are responsible for those processes. [4]

With provenance scientist can interpret and understand a result, understand the

experiment and chain of reasoning that was used in the production of a result, verify that

an experiment was performed according to acceptable procedures, identify the inputs to

an experiment were and where they came from, and track who performed an experiment

and who is responsible for its results. In a sense, provenance is as important as results.

1.2.2. What is Scientific Workflow System?

Scientific workflow is an application comprising many tasks coupled by disk

resident datasets. A scientific workflow system is a specialized form of a workflow

management system designed specifically to compose and execute a series of

computational or data manipulation steps, or workflow, in a scientific application.

1.3. Research Goal

In this thesis, our main goal is to present an alternative approach to retrospective

provenance and reproducible computing in scripts. Our approach aims to provide a

systematic framework to integrate any scripting language engine with an existing

scientific workflow system such as VisTrails, so that scientists can easily wrap their

scripts into scientific workflows with the scientific workflow system to take all the

www.manaraa.com

4

advantages of the available SWfMS for truly prospective and retrospective provenance to

achieve reproducible computing and research. While we use MATLAB in this paper to

demonstrate our integrated system approach with VisTrails, our approach is general and

can work with any scripting language engine.

1.4. Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 gives related works in

scientific workflow management systems. Chapter 3 will presents our integrated system

approach, the system design and architecture. Chapter 4 describes the system

implementation. Chapter 5 provides a comprehensive use case for illustration. Finally,

the conclusions and future work are given in Chapter 6.

www.manaraa.com

5

CHAPTER 2. RELATED WORK

Provenance is a critical concept in scientific workflows. It allows scientists to

understand the origin of their results, to repeat their experiments, and to validate the

processes that were used to derive data products.

2.1. noWorkflow

2.1.1. noWorkflow Overview

The full name of noWorkflow is not only workflow. It was presented by Leonardo

Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and Juliana Freire in 2014

[7]. While scripts are widely used for data analysis and exploration in the scientific

community, there has been little effort to provide systematic and transparent provenance

management support for them. noWorkflow is a tool that transparently captures

provenance of scripts and enables reproducibility. It can control flow information and

library dependencies. It is non-intrusive and does not require users to change the way

they work. Users do not need to wrap their experiments in scientific workflow systems,

install version control systems, or instrument their scripts. The tool is non-intrusive and

relies on techniques from Software Engineering, including abstract syntax tree analysis,

reflection, and profiling, to collect different types of provenance without requiring a

version control system or an instrumented environment. [7]

2.1.2. Drawbacks in noWorkflow

Although noWorkflow has its features, its drawbacks are also clear.

Firstly, noWorkflow’s provenance information is captured at the code level of

script statement, instead of at scientific workflow level. As a result, the recorded

provenance information is potentially overwhelming and not easy to use.

Secondly, the noWorkflow provenance approach uses additional runtime

provenance. It is typically at a much finer level of granularity. Runtime provenance

recording may introduce significant execution overhead when not used with caution. This

www.manaraa.com

6

overhead is often described in terms of the computation required to record the large

numbers of events that occur during script execution. [9]

2.2. YesWorkflow

2.2.1. YesWorkflow Overview

Another new tool called YesWorkflow which complements noWorkflow by

revealing prospective provenance in scripts. YesWorkflow produces prospective

provenance in script, which is achieved via first marking up scripts using a keyword-

based annotation mechanism, in terms of comments of the host language, and then

interpreting the structured annotation comments. YesWorkflow requires neither the use

of a workflow engine nor the overhead of adapting code to run effectively in such a

system. Instead, YesWorkflow enables scientists to annotate existing scripts with special

comments that reveal the computational modules and dataflows otherwise implicit in

these scripts. YesWorkflow tools extract and analyze these comments, represent the

scripts in terms of entities based on the typical scientific workflow model, and provide

graphical renderings of this workflow-like view of the scripts.

2.2.2. Drawbacks of YesWorkflow

However, the YesWorkflow has no retrospective provenance. McPhillips et al.

extended YesWorkflow tool to infer retrospective provenance information [9]. Since

the YesWorkflow tool and its extension are not invoked at all while a script is executing,

a fundamental limitation of retrospective provenance is that no dependencies between

data inputs, parameter settings, intermediate results, and final outputs can be directly

observed or recorded at run time. In other words, the retrospective provenance

information provided in this way is inferred based on metadata but not observed from the

actual execution of the script, and thus may not reflect the real retrospective provenance.

www.manaraa.com

7

2.3. VisTrails

2.3.1. VisTrails Overview

VisTrails is an open-source SWfMS written in Python that supports for runtime

provenance, visualization and data exploration. Users can contribute to VisTrails SWfMS

by sharing bug reports, bug fixes, and suggestions with the VisTrails community. As

scientists and engineers generate and evaluate various hypotheses and designs for their

computational experiments, modeling simulations, data analysis and visualization, a

series of different, albeit related, workflows are created through adjustment and

modification of previous workflow(s) in an interactive process.

VisTrails SWfMS was designed to manage rapidly-evolving workflows, whose

unique feature is a systematic provenance mechanism to record detailed history

information including workflow steps and data inputted and derived during the execution

of an exploratory task. This provenance information is persisted as XML files (or in a

relational database). The provenance information allows users to navigate workflow

versions in an intuitive way. It is also allowing users to analyze and visually compare

different workflows and their derived results with different input data and parameter

settings, and to support producible computing and research. A series operations and user

interfaces are enabled in VisTrails that simplify workflow design and use. These

operations and interfaces include the ability to create workflows, refine workflows by

analogy and query workflows [10].

2.3.2. VisTrails’ Important Features

The VisTrails SWfMS has many features:

• Flexible Provenance Structure.

VisTrails SWfMS can track all the changes which was made in workflows. These

changes including all the explore steps. The VisTrails system can track the execution

information in run-time of workflows. This information including who executed a

module, elapsed time, on which machine and so on. VisTrails SWfMS also offers a

flexible annotation structure, with this structure users can specify provenance

information.

www.manaraa.com

8

• Version Tree for Querying and Re-using.

The version tree stores all the provenance information which is a tree structure.

Users can choose a relational database, such as MySQL, or XML files in the file system,

to store this tree information. The VisTrails SWfMS provides flexible query interfaces

through which users can reuse and explore workflow and provenance information.

• Easier for Collaborative Exploration.

The VisTrails SWfMS can be configured with a database backend. This database

backend is being used as a repository which can be shared between different users.

Multiple users can collaboratively explore through the synchronization mechanism.

• Extensibility.

VisTrails SWfMS provides a plugin functionality which is very simple and easy

to use. Each user can dynamically add libraries and user packages. These extensions

neither re-compilation of the system nor changes the user interfaces. Since VisTrails is

written in Python, all of Python-wrapped libraries and third-party packages are easy to be

integrated in this system.

• Parameter Exploration and Scalable Derivation of Data Products.

A series of operations which is for the simultaneous generation of multiple data

products are supported in VisTrails SWfMS. These series of operations implemented by

an interface that allows user to specify the value sets for different parameters in a

workflow. VisTrails SWfMS contains a Spreadsheet, which display all the results of a

parameter exploration side by side for easy comparison.

• Analogy Task Creation.

Analogies are first-class operations which is supported in VisTrails SWfMS. They

are used to guide semi-automatic changes to multiple workflows. Users are not required

to edit or manipulate the specifications of scientific workflow directly. [10]

www.manaraa.com

9

CHAPTER 3. APPROACH AND ARCHITECTURE

3.1. Design Objectives

We present the following objectives that guided the development of our

reproducible computing approach.

• Objective 1: Provide scientists with a truly scientific workflow and

provenance tool in their exploratory research with their favorable script

languages such as MATLAB.

No scientific workflow and data provenance are supported in MATLAB. As

MATLAB is commercial and closed source software, users have no way to modify and

extend the MATLAB engine to add any runtime provenance mechanism. Therefore, it

would be desirable to provide a framework enabling scientific workflow and provenance

for MATLAB scripts for scientific communities.

• Objective 2: Support scientific workflow for script languages such as

MATLAB at multiple granularity levels as scientists choose for their

scripts.

Depending on the exploratory task at hand, scientists may need the very fine-

gained provenance at statement level, or a coarse-grained provenance at module level

(e.g., hundreds or thousands of lines of scripts), or multiple granularity levels

simultaneously. A fine-gained provenance maintains very detailed execution history

information for analysis but could be easily overwhelming. On the other hand, a coarse-

grained provenance can be more efficient in many cases. Consequently, an effective

workflow and provenance tool should support multiple granularity levels on demand.

• Objective 3: Support both prospective and retrospective provenance. In

particular, support a truly retrospective provenance by recording

provenance information at run time.

The prospective provenance of a script generates a workflow to explicitly reveal

the structures of computational modules and dataflows that may be implicit in the script.

On the other hand, retrospective provenance is the steps executed at the run time. Here,

the ability to record provenance trace information during the execution is the key in

www.manaraa.com

10

retrospective provenance, which requires building an underlying runtime recording

system. In contrast, a recent work [9] on the extension of YesWorkflow tool can only

infer rather than record retrospective provenance information at run time.

We propose to integrate a scripting language engine with VisTrails, by which the

resulting integrated system makes good use of VisTrails’ scientific workflow and

provenance for the scripts. Scientific workflow and provenance are a great tool and

paradigm not only to better describe, manage, and understand complex scripts with more

meaningful structures and explicit data flows, but also to greatly support workflow and

data provenance and reproducible computing. Our approach achieves all of the above

design objectives, and can apply to both open-source script languages (e.g., R) and

closed-source script languages (e.g., MATLAB).

3.2. High Level Architecture

The high-level architecture of the integrated system based on our approach is

master/slave. VisTrails is the master process and a script language engine such as

MATLAB in this work is the slave process, as shown in Figure 3.1.

The basic idea of our system integrating is as follows. First, MATLAB script is

wrapped into MATLAB modules which can be added to and used in VisTrails. This is

accomplished through an automated MATLAB module generating mechanism that is

developed in our integrated VisTrails-MATLAB system. After the wrapped MATLAB

modules are generated, they will then be installed into VisTrails to be used in building a

scientific workflow in VisTrails as individual workflow modules (i.e., workflow steps).

During the course of workflow execution in VisTrails, when starting to execute the first

MATLAB module, VisTrails invokes the MATLAB process via MATLAB Engine

Application Program Interface (API) from Python to execute the corresponding

MATLAB script; the computing output is returned from the MATLAB process to the

VisTrails process; VisTrails workflow control selects the next workflow module

(workflow step) to execute. This coupling interactions between VisTrails and MATLAB

continue until the completion of the entire workflow specified in VisTrails.

www.manaraa.com

11

Figure 3.1 Master/Slave Architecture of the Proposed Integrated System.

3.3. VisTrails Extension Interface

To integrate VisTrails with MATLAB engine, we need to explore VisTrails

extension interface, which is a plugin infrastructure for VisTrails users to integrate user-

defined functions and libraries into VisTrails. The added modules are called user

packages or user modules. Based on VisTrails extension interface, we provide an

automated mechanism to wrap MATLAB script into MATLAB modules and add them

into VisTrails for VisTrails-MATLAB integration.

www.manaraa.com

12

Figure 3.2 Extension structure.

Figure 3.2 is the extension structure. Throughout the integration process, we make

two layers wrapping. The outer layer wrapping is VisTrails wrapping. There are two

functions to implement this wrapping. The first function is to define a user package. This

definition contains module name, input port number, input port type, output port number,

output port type, and version and so on. The second function is to implement a compute()

method. In this method, it will implement the inner layer wrapping: MATLAB Wrapping.

MATLAB Wrapping will use MATLAB Engine API to send data to MATLAB and get

data back from MATLAB. Different MATLAB version has different API. This API will

be discussed in next section.

The two layers wrapping makes MATLAB function(s) and/or script into a

VisTrails user module, which specifies module name, input and output, module version

and so on. A new VisTrails user module must be a subclass derived from Module, the

VisTrails base class. The compute() method required to be overridden to perform the

actual module computation that user specifies by MATLAB functions or script. It uses

MATLAB Engine API to send input to MATLAB and get output back from MATLAB,

thus integrating MATLAB into VisTrails. For VisTrails wrapping, we need to generate

two files, “__init__.py” and “init.py”. These two files make the module reloadable. The

www.manaraa.com

13

identification, name, version, configuration, and module dependencies methods will be in

“__init__.py” file. Imports, other class definitions, input/output port definition,

initialization method, and compute method will be in the “init.py” file.

3.4. MATLAB Interface

MATLAB has several interfaces for Python. The first one is called MATLAB

COM Integration. A COM object is a software component that conforms to the

Component Object Model. COM enforces encapsulation of the object, preventing direct

access of its data and implementation. COM objects expose interfaces, which consist of

properties, methods and events.

Another interface is called DLL (Dynamic Link Library) engine. Users can write

their own wrapper on this engine.

The third one is MATLAB Engine API for Python which starting from the

MATLAB version 2014b. The MATLAB Engine API for Python provides a package for

Python to call MATLAB. It allows MATLAB to be called from other programs in

Python, using MATLAB as a computation engine. Engine applications require an

installed version of MATLAB.

Sharing MATLAB engine in python is a good feature in MATLAB. It supports

the user to connect the MATLAB Engine for Python to a shared MATLAB session that is

already running on our local machine. This API allows each individual generated

MATLAB module, through its overridden compute() method to connect to a shared

MATLAB engine for execution.

The second level wrapping in figure 3.2 will use this API to connect to a shared

MATLAB engine. The data in VisTrails, MATLAT functions and scripts will be sent to

MATLAB via this wrapping. And also, MATLAB returned data will be sent to VisTrails

port in this wrapping.

3.5. Python Interface

Before MATLAB 2014b, users have to write their own interface to connect to

MATLAB. There are several third-party packages in python to support this connection.

www.manaraa.com

14

3.5.1. Pymat

PyMat [13] exposes the MATLAB engine interface allowing Python programs to

start, close, and communicate with a MATLAB engine session. In addition, the package

allows transferring matrices to and from an MATLAB workspace. These matrices can be

specified as NumPy arrays, allowing a blend between the mathematical capabilities of

NumPy and those of MATLAB. The drawback of Pymat is that it does not support

calling MATLAB function.

It is a low-level interface to MATLAB using the MATLAB engine (libeng) for

communication. The module has to be compiled and linked with libeng.

3.5.2. Mlabwrap

Mlabwrap is a high-level python to MATLAB bridge that lets Matlab look like a

normal python library [14]. It is also coming as a module which needs compilation and

linking against libeng. It exposes Matlab functions to python so user can call MATLAB

functions.

3.5.3. Pymatlab

This package lets Python users interface and communicate with MATLAB from

Python [15]. Pymatlab makes it easier for users to integrate a project with a large

MATLAB codebase into python scripts by using MATLAB scripts as a part of the python

program.

The basic functionality of this package is to send data from Python to MATLAB’s

workspace to be able to run MATLAB function on the data. After processing, user

retrieve back data to python. This enables user to process data with MATLAB’s built in

functions, toolboxes or MATLAB-scripts. It is also possible to use MATLAB’s to

generate plots or other graphics.

The package uses Numpy’s ndarrays and translates them into MATLAB’s

mxarrays using Python’s ctypes and MATLAB’s mx library. The interface to

MATLAB’s workspace in done through MATLAB’s engine library.

www.manaraa.com

15

This package also interacts with Matlab through libeng. Unlike the other packages

this one loads the engine library through ctypes thus no compilation required. In our

research, we use this third-party package as our interface for old MATLAB version.

(MATLAB 7.0)

www.manaraa.com

16

CHAPTER 4. IMPLEMENTATION

As described in Chapter 3, our solution to VisTrails-MATLAB integration is a

two-phase procedure. The first phase is how to build MATLAB modules from MATLAB

script, and install these MATLAB modules into VisTrails as basic building blocks for

establishing a scientific workflow. The second phase is the execution of a workflow by

the integrated VisTrails-MATLAB system. Figure 4.1 illustrates our VisTrails-MATLAB

integration process in some detail. Step 1 indicates wrapping MATLAB script and

generating MATLAB modules, while step 2 indicates installing MATLAB modules into

VisTrails. Step 3 indicates building a scientific workflow in VisTrails with MATLAB

modules, just like VisTrails self-generated modules. These three steps form the first

phase of the integration procedure. Steps 4-7 illustrate the course of execution of the built

scientific workflow with MATLAB modules, the second phase of the integration

procedure, in which VisTrails will automatically record each workflow step with its

parameter setting, data input and data output during the execution as provenance

information. The key development in our solution is an automated MATLAB module

generating mechanism which can accomplish step 1 in Figure 4.1, while the rest steps

shown in Figure 4.1 are handled the by VisTrails’ own functionality in conjunction with

MATLAB Engine API for Python.

www.manaraa.com

17

Figure 4.1 Illustration of VisTrails-MATLAB integration.

In the second step, the user, through the VisTrails menu in the preference option,

installs any MATLAB module that is generated in step 1. Installed MATLAB modules

can be used in VisTrails in the form of workflow, enabling MATLAB script data

provenance via VisTrails provenance functionality at the workflow module level. In the

third step, MATLAB modules are used like VisTrails self-generated module, free to drag

and drop any connection of data flow between modules via VisTrails Graphical User

Interface, generating a scientific workflow. When performing the MATLAB module in

steps 4 and 5, VisTrails calls the MATLAB API in python and passes the corresponding

input data and commands to the MATLAB engine for execution, and the output data are

returned to VisTrails in steps 6 and 7. During the execution, VisTrails will automatically

record all the operations and data provenance at run time.

www.manaraa.com

18

4.1. Generation of MATLAB Module

As VisTrails is the master part of the integrated VisTrails-MATLAB, our solution

is implemented based on VisTrails (version 2.1.4). We have developed multiple

VisTrails-MATLAB integration versions to support different MATLAB versions from

MATLAB 7 to MATLAB 2016b. As the new version of MATLAB is the mainstream, we

first present our implementation with MATLAB 2016b.

4.1.1. With MATLAB 2016b

First of all, we extend VisTrails’ Graphical User Interface (GUI) to include a

MATLAB menu for generating MATLAB modules in VisTrails. The graphical interface

of VisTrails is built by Tkinter, the de-facto standard Python GUI interface, which is a

thin object-oriented layer on top of Tcl/Tk. Both Tkinter and Tcl/Tk are available on

most UNIX platforms, as well as on Windows systems. By modifying the VisTrails GUI

file, we add a menu button for MATLAB module generation into the VisTrails user

interface's menu bar, as shown in Figure 4.2.

Figure 4.2 Illustration of integrated VisTrails-MATLAB menu bar.

www.manaraa.com

19

Figure 4.3 The process of generating MATLAB module.

The process of generating MATLAB module is described in Figure 4.3. First,

from the VisTrails-MATLAB menu bar, click Matlab button and select “Create Matlab

Module”. The user then enters necessary information including MATLAB module name,

input and output ports and port types. Here the module name can be a MATLAB function

name, a user's own defined function or MATLAB script M file name. The input and

output ports and types correspond to the number and types of inputs and outputs of the

corresponding module. Finally, after the completion of the above information, to the user

starts MATLAB module generating. At this moment, generator.py file is called and

executed, which will process the inputted information of MATLAB module, use the

template file, and then generate the corresponding module files. Two files will be

generated for the user’s MATLAB module: init.py and __init__.py. Since each generated

file follows some common patterns, we use string template to provide simple string

substitutions. Thus, two template files are used for the generated module: “init.template”

file, for generating the init.py file of the module; and “ __init__.template” file, for

www.manaraa.com

20

generating the file “__ init__.py”, which containing the ID and version information.

Finally, these two generated files will be saved in the user package

directory: %USERPROFILE%\.vistrails\userpackages\. There can be different

subfolders with different names under this folder, corresponding to user’s different

generated MATLAB modules.

4.1.2. With MATLAB 7

As we mentioned in 3.5. There is no official interface for Python to MATLAB. So

we use a third party open source package - Pymatlab as our python interface.

The main steps in generating MATLAB are the same with MATLAB 2016b. The

only differences are the “template” files, which need to be changed to another version.

4.2. Template Design

4.2.1. With MATLAB 2016b

Two templates designed to help create MATLAB modules in VisTrails are shown

in Figures 4.4 and 4.5, respectively.

Figure 4.4 __init__.template file.

Template file “__init__.template” is designed and used to generate __init__.py

file, which provides metadata about a module. ${ … } is a substitution placeholder.

Name is a human-readable name for the module. Version is simply the version

information about the module. The most important part of the metadata here is the

identifier, stored in the identifier variable. This string variable must be globally unique

across all modules in VisTrails SWfMS, not only in MATLAB modules.

www.manaraa.com

21

Figure 4.5 init.template.file.

Template file “init.template” is designed and used to generate init.py file. The

actual definitions information of the modules is contained in the init.py file. Each

VisTrails module corresponds to a Python class which derives from the Module class.

The Module class is defined in vistrails.core.modules.vistrails_module. Each VisTrails

user module must define its input ports and output ports, and also have to implement a

compute() method that takes no extra parameters. In compute() method, we defined

several placeholders. We developed a “Generate module”, which will generate strings

and provide string substitution to all these placeholders.

${GetInputDate} is the placeholder for setting the input port data to this module.

${PutValue} is the placeholder for putting input values to MATLAB workspace. ${Run}

is the placeholder for running MATLAB engine. ${GetValue} is the placeholder for

getting value form MATLAB engine and saving the value to local variable.

${SetOutputData} is the placeholder for sending data to output port of this module.

www.manaraa.com

22

Function initialize() is used to register input ports and output ports. In this

function, it contains placeholder ${RegInputPort} and ${RegOutputPort}, which will

also be substituted during module generating.

4.2.2. With MATLAB 7

Figure 4.6 init.template file for MATLAB 7.

For MATLAB 7, the “init.template” file is changed to another version. Shown in

Figure 4.6. “__init__.template” file is the same with MATLAB 2016b.

www.manaraa.com

23

4.3. Graphical User Interface Design

We have designed two different user interfaces for inputting MATLAB module

information. One is the command line input, whereas the other one is the GUI input. For

user’s convenience, we integrate GUI method into VisTrails. In the menu bar click

MATLAB-> Create Matlab Module, the GUI interface will be displayed, as shown in

Figure 4.6.

Figure 4.7 The Graphical User Interface for inputting MATLAB module

information.

The Module Name can be a specific function name in MATLAB, such as

wavedec2, or the user defined script m file. For example, if the user has a script file

called wavelet_analysis.m, the Module Name is wavelet_analysis.

Input Ports and Output Ports indicate the number of parameters and data input and

output of the module. These input and output ports can be used to connect different

modules in a workflow via mouse dragging. If a module does not have any

parameter/data to input or output, one can enter 0 directly in the corresponding GUI

entry.

Input Type and Output Type correspond to the parameter types of the module

input and output, respectively. These types are of basic types in VisTrails, and Table 4.1

www.manaraa.com

24

lists the type mapping from VisTrails types to MATLAB types. Table 4.2 list the type

mapping from MATLAB types to VisTrails types.

If a type used in MATLAB has no counterpart type in VisTrails, we then create a

new type name to support it. For example, a new “Func” type in VisTrails is created for

function handle type in MATLAB. When MATLAB functions return output arguments,

the MATLAB Engine API for Python converts the data types into equivalent Python data

types.

Table 4.1: Data type mapping from VisTrails to MATLAB

VisTrails data type MATLAB data type

Float Double

Integer Int64

List Numerical Array

String Char array

Boolean Logical

Func Function handle

Dictionary Structure

www.manaraa.com

25

Table 4.2: Data type mapping from MATLAB to VisTrails

MATLAB Output

Argument Type

Resulting VisTrails Data Type

Double Float

Single Float

Int8 Integer

Uint8 Integer

Int16 Integer

Uint16 Integer

Int32 Integer

Int64 Integer

Logical Boolean

Char array String

Structure Dict

Numerical array List

Finally, the Generate button is to start generating the two files for MATLAB

module, while the Clear button is to clear all the input content in the above entries.

In this section with MATLAB 7, it has the same interface design.

4.4. Other Extensions

For the convenience of users, we have also developed several generic MATLAB

modules listed in Table 4.3. These modules are pre-installed in our integrated VisTrails-

MATLAB system and are ready for use.

www.manaraa.com

26

Table 4.3: Generic modules

Module Name Features

Load

Load is a file operation module. Read

MATLAB .mat file’s data to VisTrails

Workflow

Save

Save is a file operation module. Save

VisTrails Workflow’s data to MATLAB .mat

file.

MatlabSource

MatlabSource is a module that executes

an arbitrary piece of MATLAB code.

It is especially useful for one-off pieces

of 'glue' in a pipeline.

MatlabBinaryOp

MatlabBinaryOp is a module that

performs binary operations on its inputs. These

operations contains matrix operations in

MATLAB.

Mkdir

Mkdir is a make directory command

module. The only input is the name of

directory.

www.manaraa.com

27

Figure 4.8 Some generic MATLAB modules developed for convenient use.

In Figure 4.8 there are several generic modules.

“Save” is a file operation module. Save VisTrails Workflow’s data to

MATLAB .mat file. The first input port is for the data that will be saved. The second

input port is for .mat file name. The third input port is for variable name in .mat file.

“Load” is a file operation module. Read MATLAB .mat file’s data to VisTrails

Workflow. The first input is for .mat file name. The second input is for variable name.

The output port is to output data that it just read.

“MatlabBinaryOp” is a module that performs binary operations on its inputs.

These operations contain matrix operations in MATLAB. The first input is for the

operation symbol. The second and third input are the two values. The only output is the

result.

“Mkdir” is a make directory command module. The only input is the name of

directory.

www.manaraa.com

28

“MatlabSource” is a module that executes an arbitrary piece of MATLAB code. It

is especially useful for one-off pieces of 'glue' in a pipeline. The input is the command

line, which type is string. The output is the result that return from MATLAB engine.

“Mkdir” and “Save”, these two modules require system administrator privileges

www.manaraa.com

29

CHAPTER 5. DEMONSTRATION

5.1. Demonstration Environments

In this chapter, we will demonstrate our VisTrails-MATLAB system in details.

Before showing the demonstration, we should first introduce the experiment software

environment.

Table 5.1: Experiment environment

Software Version

MATLAB
R2016b (9.1.0.441655)

64-bit (win64)

VisTrails 2.1.4.269e4808eca3

Operation System Windows 7 Ultimate x64

Python 2.7.3 (64bit)

5.2. Main Functions overview

5.2.1. From MATLAB Script to VisTrails’ Workflow

Demonstration scenario 1: User has a complete script in MATLAB, which

requires scientific workflow to achieve data provenance and version management.

To demonstrate, we use a MATLAB program for image compression based on

wavelet transformation. In order to record the data in the program, and to test the impact

of different wavelet families on the compression results, we need to record different

parameters and results.

www.manaraa.com

30

Figure 5.1 A MATLAB script for image compression based on wavelet

transformation

In MATLAB, there are typically two ways to record different parameters and

their corresponding results. One is to copy scripts multiple times and use different

parameters in each script, and store the results in different variables, finally output all the

results and compare them. In Figure 5.1, segment I computes the approximation

coefficients at level 1 and saves the result in ca1, while segment II computes the

approximation coefficients at level 2 and saves the result in ca2. The other is to run

section I multiple times by using different parameters, and save the corresponding results

in different files.

Both above methods have management flaws. They all need to manually maintain

the correspondence relationship (e.g., through file naming) between the input parameters

and the experimental results for multiple trials, which is error prone and do not scale.

Once the manual recording becomes erroneous, one simply cannot reproduce the

experimental process and results.

Our integrated VisTrails-MATLAB system with its provenance can be a desirable

solution to the above problem. One can wrap the above MATLAB code into MATLAB

modules and execute them in the environment of integrated VisTrails-MATLAB system.

Whenever the user changes parameters of any module, VisTrails will generate a new

www.manaraa.com

31

corresponding sub-version. Each version automatically records all parameter

configurations and their correspondence to the obtained results at the run time.

Figure 5.2 Creating module in VisTrails

Figure 5.2 shows how to create “imread” MATLAB module from MATLAB

script in the integrated VisTrails-MATLAB. All the other MATLAB modules, such as

“wavedec2”, “appcoef2”, “wcodemat”, “imwrite”, can be created in a similar way. After

enable, these module-packages in VisTrails (see Figure 5.3) and connect the

corresponding ports, we get the workflow specified in VisTrails shown in Figure 5.4.

www.manaraa.com

32

Figure 5.3 Enabling module packages in VisTrails

Figure 5.4 Illustration of built workflow in integrated VisTrails-MATLAB system

Select modules

to enable

Show image

www.manaraa.com

33

After forming the workflow, one can set parameters. As shown in Figure 5.5, one

can set module parameters in “wavedec2” when this module is selected. The first input

port is the image data that just read from “imread”. The second input port is the level of

decomposition. Here we use level 2. The third input is the wavelet named in string. Here

we use “bior3.7”.

Figure 5.5 Set parameters in module wavedec2

When one wants to modify the parameters, VisTrails will record our trail and

parameters. It will be shown in history through a tree structure. One can rename each

version to facilitate our management.

The following version tree shown in Figure5.6 is generated based on the two

execution trials of the workflow given in Figure 5.4, corresponding to the original

MATLAB script in Figure 5.1. The “first_compression” computes the approximation

coefficients at level 1, and the “second_compression” computes the approximation

coefficients at level 2.

Config parameters

www.manaraa.com

34

Figure 5.6 Illustration of version tree in integrated VisTrails-MATLAB system.

The integrated VisTrails-MATLAB can significantly improve the runtime

efficiency of computational trials due to its data provenance. Modules whose parameters

and input are not modified do not need to be re-run in a new trail, the workflow can

directly use the intermediate data result that has been cached. The workflow can be very

convenient to achieve module reuse. The user does not need to copy and paste the code,

but only needs to modify the parameters and/or reconnect modules via their input and

output port(s) for each new trail. After that, a new version of workflow will be created.

Moreover, for different workflow versions with different parameter settings, VisTrails

automatically records all the changes and the corresponding results. The user can easily

query between different versions and can also add their own tags and notes for different

versions, facilitating reproducible computing and research.

The user's computational experiments generate a number of versions, each of

which corresponds to different parameters and corresponding results. How can the user

quickly find the corresponding parameter settings through the output results, or find the

corresponding output result file through the parameter settings via VisTrails version tree

provenance?

First, in each workflow version, VisTrails automatically records all the changes,

parameters and time. When the user wants to check provenance information, he/she can

browse the version tree, and double click on the chosen workflow version node, say

first_compression, of the version tree (see Figure 5.7 and Figure 5.8). If he/she wants to

www.manaraa.com

35

check the results from this workflow, he/she can select module imwrite to get the image

file directory information as shown on right side in Figure 5.9. If he/she wants to check

parameter setting for this result, he/she selects the module which contains the parameters

of interest.

Figure 5.7 Version tree management left side.

Figure 5.8 Version tree management right side.

www.manaraa.com

36

Figure 5.9 Finding the result saving directory.

A tag can be given in the Tag field for user’s convenience. The panel displays

information about the user who created the selected workflow version and when that

version was created (see Figure 5.8). In addition, the Notes field allows users to write

notes or annotations associated with a version. Notes are automatically saved when one

saves the VisTrails file.

5.2.2. From VisTrails’ Workflow to MATLAB Script

Demonstration scenario 2: One can use workflow to design a computational

experiment using MATLAB script, to achieve better computational structure and

dataflow at the workflow level. For the chunk codes that MATLAB already existed, we

can create MATLAB modules to wrap these codes, thus simplifying the design process.

Still taking the wavelet compression as an example, the workflow of image

compression study can include the following workflow steps: image reading, frequency

decomposition, wavelet transformation, image generation, image output, file output these

six parts. The first three parts are the scripts from MATLAB, which can be generated

very conveniently from MATLAB script. For these parts that logically together we can

create a module in the exploratory study, this MATLAB module is at a coarser level of

www.manaraa.com

37

granularity level. For example, we can use a user-defined m file, which contains a large

chunk of script, to be used as a workflow step.

Figure 5.10 User function in MATLAB.

Figure 5.11 Use user function as workflow module

Figure 5.10 shows a user function in MATLAB, where user can create a

MATLAB function to wrap these in an m file. After that, the user can create a

corresponding MATLAB module in VisTrails, as shown in Figure 5.11. There are 3 input

variables. The first one is image data which is list type. The second one is wavelet name

which is a string type. The third one is wavelet level which is an integer type. The output

is an image data list after wavelet compression.

www.manaraa.com

38

The module wavelet_com shown in figure 5.12, is the module we created from

the MATLAB user function. We can configure the parameters on the right side. Port in2

is the wavelet name, port in3 is the wavelet level. Under the wavelet_com module is the

Show results module which contains image generation, image output and image save

modules.

This coarser level of granularity module abstract method can facilitate us to

design experiment. This level granularity will also reduce the overhead of provenance

recording.

Figure 5.12 Use of user function as a workflow module

5.2.3. Two way search

The user's computational experiment generates a number of versions, each of

which corresponds to different parameters and different results. How can the user quickly

find the corresponding parameter settings through the output results, or find the

corresponding output result file through the parameter settings?

The traditional method is: after changing the parameters, the user saves the

corresponding result in a separate folder and manually write a readme file to record the

changes. Compared to the traditional method, VisTrails use version tree provenance to

www.manaraa.com

39

manage each change. Notes and tags can be written in the version tree so that to facilitate

the search and management.

First, in each version, write the tag area with parameters that generate this version.

So that users can quickly get the parameters of each version when browsing the version

tree.

Second, write the note as the name of the subfolder to facilitate location of the

file. When a user looks for parameters that produce this result, the parameter is in tag of

this version.

If users want to find the result via parameters, they can browse the version tree.

Each node in the version tree contains a brief describe we added in note, and tag area

contains detains detail parameters. So we can use note to find the folder that the result

saved. Also, VisTrails has preview window, which can show the result image.

5.3. Wavelet Image Compression Example

Image compression refers to the use of as few data as possible to indicate the

source of the image signal. There are a lot of compression methods, which can be divided

into lossless compression and lossy compression. The former technology can accurately

reconstruct the image, the compression is relatively low. The lossy compression

technology will introduce distortion, but it is not obvious distortion.

The wavelet transform can be used to decompose the image. The wavelet

decomposition is complete and orthogonal. The wavelet transform gives a time-frequency

window that can be adjusted so that it is more accurate to the time at high frequencies,

capturing the details and edges of the image; positioning the frequency at low frequencies

can reflect the overall image feature.

Wavelet transform based image compression technology using multi-level scale

analysis. According to their important of different levels of different coefficients, it is

easily to get a high compression ratio. After an image is decomposed by two-dimensional

discrete wavelet transform, we obtain get a series of sub-images with different

resolutions. The frequency of sub-images with different resolutions is different. And the

high resolution (i.e., high frequency) sub-image on most of the points are close to 0. The

higher the frequency the more obvious this phenomenon.

www.manaraa.com

40

Now, we can use VisTrails-MATLAB system to implement the wavelet image

compression experiment.

Firstly, use Create Matlab Module GUI to create all the MATLAB toolboxes and

function that we need (Figure 4.2). Then enable all the user modules that we just created

(Figure 5.13). After that, connect all the modules and configure the parameters in each

module (Figure 5.14) and execute the workflow.

Figure 5.13 User Modules.

www.manaraa.com

41

Figure 5.14 Connect all modules.

Figure 5.15 Compression results.

www.manaraa.com

42

Figure 5.15 shows the compression results that we use “bior3.7” as wavelet filter.

1A is the original image. 1B is the result after extract the first level of low-frequency

information. 1C is the result after extract the second level of low-frequency information.

2A~2C extract from the wavelet decomposition structure the horizontal, vertical, or

diagonal detail coefficient.

The original image 1A size is 263,222 bytes. The first level compression image

1B size is 70,510 bytes, compression ratio is 73.21%. The second level compression

image 1C size is 20,538 bytes, compression ratio is 92.20%

All the other wavelet filters are shown in table 5.2. We can use different wavelet

filter to do exploratory research. All the results will be saved in the version trees, shown

in Figure 5.16.

Table 5.2: Wavelet filter

Wavelet Families Wavelet Families

Daubechies 'db1' or 'haar', 'db2', ... ,'db10', ... , 'db45'

Coiflets 'coif1', ... , 'coif5'

Symlets 'sym2', ... , 'sym8', ... ,'sym45'

Fejer-Korovkin filters 'fk4', 'fk6', 'fk8', 'fk14', 'fk22'

Discrete Meyer 'dmey'

Biorthogonal 'bior1.1', 'bior1.3', 'bior1.5'

'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8'

'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7'

'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'

Reverse Biorthogonal 'rbio1.1', 'rbio1.3', 'rbio1.5'

'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8'

'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7'

'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'

www.manaraa.com

43

Figure 5.16 Version tree.

www.manaraa.com

44

CHAPTER 6. CONCLUSION AND FUTURE WORK

In this work, we presented a general approach to provenance and scientific

workflows for script languages, to facilitate reproducible computing and research. We

demonstrated our approach by integrating MATLAB with an open source scientific

workflow system VisTrails, to support scientific workflows and provenance for

MATLAB scripts. We described the design and implementation of our integrated system

solution in detail. Our approach extends the advantages of VisTrails to widely used script

languages and promotes reproducibility in exploratory research for scientists and

engineers to address the challenges of the verification, validation, evaluation and sharing

of any new scientific result in broad community.

One direction we plan to explore in future work is how to evaluate the cost of the

effectiveness of our proposal, in particular since in some cases it may require

communication from scripting language engine with an existing scientific workflow

system. The time consumption will be very different in different situations. In some

cases, the first time running the SWfMS system will cost more resources and time in

communication. While in other cases, when user modify some parameters in workflow,

the rest of workflow data had already been cached. It saves more time resources.

We also plan to integrate other scripting languages with VisTrails and other

scientific workflow systems. So that users of different habits can enjoy the benefits of

SWfMS.

www.manaraa.com

45

REFERENCES

[1] V. Stodden, F. Leisch, and R. D. Peng, Implementing reproducible research.

Chapman and Hall CRC, 2014.

[2] P. Missier, S. Woodman, H. Hiden, and P. Watson, “Provenance and data

differencing for workflow reproducibility analysis,” Concurrency and

Computation: Practice and Experience, 2013.

[3] J. Freire, D. Koop, F. Chirigati, and C. Silva. “Reproducibility using VisTrails,”

Implementing Reproducible Computational Research, 33, 2014.

[4] S. B. Davidson, and J. Freire, “Provenance and scientific workflows: challenges

and opportunities,” Proceeding of the 2008 ACM SIGMOD international

conference on Management of data. ACM, 2008, pp. 1345-1350.

[5] J. L. R. Stevens, M. Elver, and J. A. Bednar, “An automated and reproducible

workflow for running and analyzing neural simulations using Lancet and IPython

Notebook,” Frontiers in neuroinformatics, vol. 7, p. 44, December 2013.

[6] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S.

Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F.

Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi, and

C. Goble, “The taverna workflow suite: designing and executing workflows of

web services on the desktop, web or in the cloud,” Nucleic Acids Research, vol.

41, no. W1, pp. W557–W561, 2013.

[7] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire, “noWorkflow:

capturing and analyzing provenance of scripts,” International Provenance and

Annotation Workshop. Springer International Publishing, 2014, pp. 71-83.

[8] T. McPhillips, T. Song, T.r Kolisnik, S. Aulenbach, K. Belhajjame, K. Bocinsky,

"YesWorkflow: a user-oriented, language-independent tool for recovering

workflow information from scripts." arXiv preprint arXiv:1502.02403. 2015 Feb

9.

www.manaraa.com

46

[9] T. McPhillips, S. Bowers, K. Belhajjame, and B. Ludäscher, "Retrospective

provenance without a runtime provenance recorder." USENIX Workshop on

Theory and Practice of Provenance. July 2015.

[10] The VisTrails Project. http://www.vistrails.org. [Accessed 17 April 2017]

[11] S. Dey, K. Belhajjame, D. Koop, M. Raul, and B. Ludascher, “Linking ¨

prospective and retrospective provenance in scripts,” 7th USENIX Workshop on

the Theory and Practice of Provenance (TaPP 15), 2015.

[12] K. Belhajjame, O. Corcho, D. Garijo, J. Zhao, P. Missier, D. Newman, R. Palma,

S. Bechhofer, E. Garc´ ıa Cuesta, J. M. Gomez-P ́erez ́et al., “Workflow-

centric research objects: First class citizens in scholarly discourse,” Proceedings

of Workshop on the Semantic Publishing, (SePublica 2012), 2012.

[13] Pymat Home. http://pymat.sourceforge.net [Accessed 17 April 2017]

[14] Mlabwrap Home. http://mlabwrap.sourceforge.net [Accessed 17 April 2017]

[15] Python interface to MATLAB. https://pypi.python.org/pypi/pymatlab [Accessed

17 April 2017]

[16] A. Sterian. “PyMat—an interface between Python and MATLAB.” Grand Valley

State University, Allendale, MN. 1999.

[17] YesWorkflow project site and README. https://github.com/yesworkflow-

org/yw-prototypes, [Accessed 17 April 2017]

[18] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludascher, T. M. M̈cPhillips, S.

Bowers, M. K. Anand, and J. Freire. ‘Provenance in Scientific Workflow

Systems.” IEEE Data Eng. Bull., 30(4):44–50, 2007.

[19] J. Frew, D. Metzger, and P. Slaughter. “Automatic capture and reconstruction of

computational provenance.” Concurrency and Computation: Practice and

Experience, 20(5):485–496, 2008.

[20] MATLAB http://www.mathworks.com/ [Accessed 17 April 2017]

[21] Y. Zhao, M. Wilde, and I. Foster. “Applying the virtual data provenance model.”

International Provenance and Annotation Workshop (IPAW), 2006.

[22] Y. Dong, B. Wang. Mixed language programming with python and matlab.

Modern Electronic Technique. 30(14), 108-110, 2007.

www.manaraa.com

47

[23] W. Aalst and K. Hee. Workflow Management: Models, Methods, and Systems.

MIT Press, 2002.

[24] I. Altintas, O. Barney, and E. Jaeger-Frank. “Provenance collection support in the

kepler scientific workflow system.” International Provenance and Annotation

Workshop. Springer Berlin Heidelberg, pages 118–132, 2006.

[25] R. S. Barga and L. A. Digiampietri. “Automatic capture andefficient storage of

escience experiment provenance.” Concurrency and Computation: Practice and

Experience, 20(5):419–429, 2008.

[26] S. Bowers, T. McPhillips, and B. Ludaescher. “A provenance model for

collection-oriented scientific workflows.” Concurrency and Computation:

Practice and Experience, 20(5):519–529, 2008.

[27] R. Bose, I. Foster, and L. Moreau. "Report on the International Provenance and

Annotation Workshop:(IPAW'06) 3-5 May 2006, Chicago." ACM SIGMOD

Record 35.3 (2006): 51-53.

[28] S. Cohen, S. C. Boulakia, and S. B. Davidson. “Towards a model of provenance

and user views in scientific workflows.” International Workshop on Data

Integration in the Life Sciences Springer Berlin Heidelberg. (pp. 264-279).

[29] Y. L. Simmhan, B. Plale, and D. Gannon. "A survey of data provenance in e-

science." ACM Sigmod Record 34(3):31–36, 2005.

[30] Y. L. Simmhan, B. Plale, and D. Gannon. “Karma2: Provenance management for

data driven workflows.” Web Services Research for Emerging Applications:

Discoveries and Trends: Discoveries and Trends :317, 2010.

[31] Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru. "Performance evaluation of

the karma provenance framework for scientific workflows." International

Provenance and Annotation Workshop. Springer Berlin Heidelberg, 2006.

[32] J. Golbeck and J. Hendler. “A semantic web approach to tracking provenance in

scientific workflows.” Concurrency and Computation: Practice and Experience,

20(5):431–439, 2008.

[33] P. Missier, S. Woodman, H. Hiden, and P. Watson. “Provenance and data

differencing for workflow reproducibility analysis.” Concurrency and

Computation: Practice and Experience, vol. 28, no. 4, pp. 995–1015, 2016.

www.manaraa.com

48

[34] C. Bochner, R. Gude, A. Schreiber. “A Python library for provenance recording

and querying.” International Provenance and Annotation Workshop (IPAW). pp.

229–240, 2008.

[35] J. Kim, E. Deelman, Y. Gil, G. Mehta, V. Ratnaka. “Provenance trails in the

wings/pegasus system.” Concurrency and Computation: Practice and Experience,

20(5), 587-597, 2008.

[36] M. R. Huq, P. M. Apers, A. Wombacher. “ProvenanceCurious: a tool to infer

data provenance from scripts.” Proceedings of the 16th International Conference

on Extending Database Technology (pp. 765-768). ACM. 2013

[37] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, B. Plale. “The open

provenance model core specification (v1. 1).” Future generation computer

systems, 27(6), 743-756. 2011.

[38] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva,

H. T. Vo. “Vistrails: Enabling interactive multiple-view visualizations.”

Visualization, 2005. VIS 05. IEEE (pp. 135-142).

[39] J. Frew and R. Bose. “Earth system science workbench: A data management

infrastructure for earth science products.” Scientific and Statistical Database

Management, 2001. SSDBM 2001. Proceedings. Thirteenth International

Conference on. IEEE, 2001.

[40] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C.T. Silva, H. T. Vo,

"Managing the evolution of dataflows with VisTrails." Data Engineering

Workshops, 2006. Proceedings. 22nd International Conference on. IEEE, 2006.

[41] D. Koop, J. Freire, C. T. Silva. "Enabling reproducible science with VisTrails."

arXiv preprint arXiv:1309.1784, 2013.

